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Chapter 10: Bayesian Games

Note: This is a only a draft version, so there could be flaws. If you find any errors, please do send email to
hari@csa.iisc.ernet.in. A more thorough version would be available soon in this space.

e A game with incomplete information is one in which, at the first point in time when the players
can begin to plan their moves in the game, some players have private information about the
game that other players do not know.

e In contrast, in complete information games, there is no such private information and all infor-
mation is publicly known to everybody.

e Incomplete information games are more realistic, more practical.

e The initial private information that a player has at the first point in time when he begins to plan
his mowves in the game is called the type of the player. For example, in an auction involving a
single indivisible item, each player would have a valuation for the item and typically the player
himself would know this valuation deterministically while the other players may only have a
guess about how much this player values the item.

e John Harsanyi (Joint Nobel Prize winner in Economic Sciences in 1994 with John Nash and
Richard Selten) proposed in 1968, Bayesian form games to represent games with incomplete
information.

1 Bayesian Games: Definition, Notation, and Examples

A Bayesian game is a tuple I' = (N, (0;), (S;), (pi), (u;)), where the components are described in Table
2.

e N=1{1,2,...,n} is a set of players
e O; is the set of types of player ¢ where 1 = 1,2,...,n.

e S; is the set of actions or pure strategies of player 1 where 1 = 1,2,...,n.



N A set of players, {1,2,...,n}
©; | Set of types of player ¢
Si Set of actions or pure strategies of player ¢

Di A probability (belief) function of player 4
A function from O; into A(©_;)

(C] Set of all type profiles Z.EXN ©;
0 0= (61,...,0,) € O; a type profile
©_; | Set of type profiles of agents except i; ; 7;;@7,

0_; | 0—; € ©_;; a profile of types of agents except ¢
X

iEN Si

Uu; Utility function of player 4; u; : S x © = R

S Set of all pure strategy profiles

Table 1: Notation for a Bayesian game

e The probability function p; is a function from O; into A(©_;) the set of probability distributions
over ©;. That is, for any possible type 6; € ©;, p; specifies a probability distribution p;(e|6;)
over the set ©_; representing what player 7 would believe about the types of the other players if
his own type were ;.

e The payoff function u; : ©® x § — R is such that, for any profile of actions and any profile of
types (0,s) € © x S, u;(0, s) specifies the payoff that player ¢ would get, in some von Neumann
- Morgenstern utility scale, if the players’ actual types were all as in © and the players all chose
their actions according to s.

e I is a finite game iff N, (0;);cn, and (S;)ien are all finite.
e When we study a Bayesian game, we assume that

1. Each player i knows the entire structure of the game as defined above
2. Each player knows his own type in ©;

3. The above facts are common knowledge among all the players in N.
4

. The exact type of a player is not known deterministically to the other players who however
have a probabilistic guess of what this type is; note that the belief functions p; (which are
conditional probability distributions) are also common knowledge among the players.

e The phrases actions and strategies are used differently in the Bayesian game context. A strategy
for a player ¢ in Bayesian games is defined as a mapping from ©; to S;. A strategy s; of a player
i, therefore, specifies a pure action for each type of player i. Thus s;(6;) for a given 6; € ©;
would specify the pure action that player ¢ would play if his type were 6;. The notation s;(.) is
used to refer to the pure action of player ¢ corresponding to an arbitrary type from his type set.

Example: A Bargaining Game

There are two players, player 1 and player 2. Player 1 is the seller of some object and player 2 is the
only potential buyer. Each player knows what the object is worth to himself but thinks that its value
to the other player may be any integer from 1 to 100 with probability ﬁ. In this game, each player



will simultaneously name a bid between 0 and 100 for trading the object. If the buyer’s bid is greater
than the seller’s bid they will trade the object at a price equal to the average of their bids; otherwise
no trade occurs. For this game:

N = (1,2}

0, =0, ={1,2, ... ,100}

S1=5,={0,1,2, ... ,100}

pi(0_:16:) = ﬁw EN V(0,0 €O

uy (01,09, 51, 89) = 2 42_52 —0; if sy > s
=0 if s9 < 81

ug (01,03, 51, 59) = Oy — 2 RILCY; S9 > 81
=0 if 89 < 81

Bayesian Games with Infinite Type Sets

e [t is often easier to analyze examples with infinite type sets than those with large finite type
sets.

e The only notational complication is that, in the infinite case, the probability distributions p;(e|6;)
must be defined on all measurable subsets of ©_; instead of just individual elements of ©_;.

e For example, if R_; is a subset of ©_;, we define p;(R_;|6;) as the subjective probability that

player ¢ would assign to the event that the profile of others’ types is in R_;, if his own type were
0;

Example: Bargaining Game with Continuous Types

Consider the bargaining game as above but with real intervals as type sets. For example, ©1 = Oy =
S1 = S2 = [0,100]. For each player i and each 0; € ©;, let p;(e|6;) be the uniform distribution over
[0,100]. Then for any two numbers z and y such that 0 < z < y < 100, the probability that any type
0; of player ¢ would assign to the event that the other player’s type is between x and y is:

Yy—x
100

pi([z,y]|0;) =

Consistency of Beliefs

We say beliefs (p;)ien in a Bayesian game are consistent iff there is some common prior distribution
over the set of type profiles ©® such that each player’s beliefs given his type are just the conditional
probability distributions that can be computed from the prior distribution by the Bayes’ formula. In
the finite case, beliefs are consistent if 3 some probability distribution P € A(©) such that

P(6;,0_;)

> P(6;,0-)
0_;,€0_;

VO € O;Vie N

pi(0-i10;) =



Consistency simplifies the definition of the model. The common prior on © determines all the prob-
ability functions. In a consistent model, differences in beliefs among players can be explained by
differences in information whereas inconsistent beliefs involve differences of opinion that cannot be
derived from any differences in observation and must be simply assumed a priori.

Example: Consistent Beliefs in the Bargaining Game

In the bargaining problem discussed above, the beliefs are consistent with the prior

1
PO)= —— VOO
() 10000 <
where
0={1, ... ,100} x {1, ... ,100}

In the infinite version, the beliefs are consistent with a uniform prior on [0, 100] x [0, 100].

Example: A Game with Inconsistent Beliefs

If it is common knowledge that the coaches of two teams in a cricket match believe that his own team
has a 2/3 probability of winning the match, then the beliefs of the coaches cannot be consistent with
any common prior. It is important to note that, in a consistent model, it can happen that each coach
believes that his team has a 2/3 probability of winning but this difference of beliefs cannot be common
knowledge.

2 Type Agent Representation and the Selten Game

Richard Selten proposed a representation of Bayesian games that enables a Bayesian game to be
transformed to a strategic form game (with complete information). The idea is to represent every
possible type of every player as an agent or player in the new game. Given a Bayesian game

the Selten game is an equivalent strategic form game
I = <Nsa (Sj)’ (UJ)>

The idea used by Selten is to have type agents. Each player in the original Bayesian game is now
replaced with a number of type agents; in fact, a player is replaced by exactly as many type agents
as the number of types in the type set of that player. We can safely assume that the type sets of the
players are mutually disjoint. The set of players in the Selten game is given by:

N =[] ©;

1EN

Note that each type agent of a particular player can play precisely the same actions as the player
himself. This means that for every 6; € ©;,



From now on, we will use S® and S interchangeably whenever there is no confusion.

The pay off function Uy, for each §; € ©; is the conditionally expected utility to player 7 in
the Bayesian game given that 6; is his actual type. It is a mapping with the following domain and
co-domain:

X X
U : ;
0 z‘eNeieG)iS’_NR

We will explain the way Up, is derived using the following example.

Example: Selten Game

Counsider the following Bayesian game.

N={1,2}
01 ={z1}

O2 = {22, Y2}
S1 = {a1,b1}
So = {a1, b2}
p1(za|z1) = 0.6
p1(y2|z1) = 0.4
pa(z1]ze) = 1
pa(z1ly2) =1

Note that, since ©1 is a singleton set, player 1 has only one type, which implies that his type informa-
tion is common knowledge. To complete the definition of the Bayesian game, we now have to specify
the utility functions. Let the utility functions for the two possible type profiles 1 = 1, 62 = 2 and
0, = z1, 63 = yo be defined as follows.

2
1 a9 b2
ar | 1,210, 1
b |04 1,3

u1 and ug for 61 = x1;09 = x4

2
1 a9 b2
a1 | 1,3]0,4
by | 0,1 1,2

u1 and uo for 01 = z1;602 = yo
This completes the description of the Bayesian game. We now derive the equivalent Selten game:

<N57 (‘5’01) 0;€0;, (Ugl) 0;€9; )
iIEN iEN



We have

N =0:U0Oy = {.’,61,552,?/2}
Sz, =51 ={a1,b1}
Szy = Sy, = S2 = {az, b}

Note that
Ugi:Sl><SQXSQ_)§R Vo, € ©;,Vi € N

Sl X SZ X SZ = {(aflaaQaa?)a (a'laaQ,bQ)a (alabQ,G'?)a (a‘labZabQ)a (bl,a21a2)a (b17a25b2)a
(b17b2aa'2)7(b17b2ab2)}

The above set gives the set of all strategy profiles of all the type agents. A typical strategy profile
can be represented as (Sg;, Sz,, Sy,). This could also be represented as (s1(.), s2(.)) where the strategy
s1 is a mapping from ©; to S; and the strategy so is a mapping from ©5 to So. In general, for an n
player Bayesian game, a pure strategy profile is of the form

((891)916911 (892)926927 R (San)aneen)
Another way to write this would be (s1(.),s2(.),.-.,8n(.)), where s; is a mapping from ©; to S; for
i=1,2,...,n.

The payoffs for type agents (in the Selten game) are obtained as conditional expectations over the
type profiles of the rest of the agents. For example, let us compute the payoff Uy, (a1, a2, as2), which
is the expected payoff obtained by type agent z; (belonging to player 1 ) when this type agent plays
action a1 and the type agents x2 and yo of player 2 play the actions as and as respectively. In this
case, the type of player 1 is known but the type of player could be z2 or y» with probabilities given
by the belief function p;(.|z1). The following conditional expectation gives the required payoff.

Uz, (a1,a2,a2) = pi(z2|z1)ur (21,7201, 02)
+p1(y2|z1)u1 (21, Y2, 01, a2)
= (1)(0.6) + (1)(0.4)
0.6 +0.4
=1

Similarly, the payoff Uy, (a1, az2,b2) can be computed as follows.

Uz (a1,a2,b2) = pi(z2|z1)ui(z1, 2,01, a2)
+p1(y2|T1)ui (w1, y2, a1, bo)
= (1)(0.6) + (0)(0.4)
= 0.6

Payoff Computation in Selten Game

In general, given: (1) a Bayesian game I = (N, (0;), (S;), (pi), (ui)), (2) its equivalent Selten game
I'* = (N*,(Sp,), (Uy,;)), and (3) a pure strategy profile in the Selten game is of the form

((391)916917 (892)926627 s (San)eneen)a



the payoffs Uy, for §; € ©; (i € N) are computed as follows.

Uai (807; ) 39_,') = z Di (t—z|91)uz(017 t—ia S0 St_,;)
t_;€0_;

where s; . is the strategy profile corresponding to the type agents ;. A concise way of writing the
above would be:

Uei (391, 59_,-) = Ea_i [UZ (9Z7 9_2', S6;, Se_i)]
Another notation which is also often used for Uy, (sg;, sg_;) is Ui(se,, so_;|0:)-

3 Equilibria in Bayesian GGames

Pure Strategy Bayesian Nash Equilibrium
A pure strategy Bayesian Nash equilibrium in a Bayesian game

I'= (N, (©i), (S:), (pi), (ui))
can be defined in a natural way as a pure strategy Nash equilibrium of the equivalent Selten game.
That is, a profile of type agent strategies

s* = ((sh,)01€01, (88,)02€0,5 - - -, (50, )0, c0,)
is said to be a pure strategy Bayesian Nash equilibrium of ' if Vi € N, V0, € ©;,
Up, (sp,,5%9,) > Uy, (si,5%,) Vs; € S

*

Alternatively, a strategy profile (si(.),s5(.),...,s:(.)) is said to be a Bayesian Nash equilibrium if
Uy, (si(0:), sZ;(0-i)) = Up,(si,s2;(0—:)) Vs; € S; Vb, € ©; Vie N

Example: Pure Strategy Bayesian Nash Equilibrium
Counsider the example being discussed. We make the following observations.

e When 6 = 9, the strategy by is strongly dominated by ao. Thus player 2 chooses ao when
92 = T9.

e When 6y = yo, the strategy as is strongly dominated by bs and therefore player 2 chooses by for
player 2 when 6y = ys.

e When the profiles are (a1,a9) or (b1, bs), player 1 has payoff 1 regardless of the type of player 2.
In all other profiles, pay off of player 1 are zero.

e Since p;(z2|z1) = 0.6 and p;(y2|z1) = 0.4, player 1 thinks that the type zo of player 2 is more
likely than type ys.

The above arguments show that the unique pure strategy Bayesian Nash equilibrium in the above
example is given by:

(sz, = a1, 5, = a2,s,, = ba)
The above example illustrates the danger of analyzing each matrix separately as shown by the argu-
ments below.



e If it is common knowledge that player 2’s type is z2, then the unique Nash equilibrium is (a1, a9).
If it is common knowledge that player 2 has type yo2, then we get (b1, bs) as the unique Nash
equilibrium.

e In a Bayesian game, the type of player 2 is not common knowledge and hence the above prediction
based on analyzing the matrices separately is wrong.

e Note that if player 2’s type is za, then the preferred strategy for player 1 is a; while it is by if
player 2’s type is ys.

e This implies that player 1 could not behave as predicted unless he received some information
from player 2.

e Thus the prediction (a1, as) if player 2’s type is xo and (b1, by) if player 2’s type is y2 can be
fulfilled only if appropriate communication is added to the structure of the game.

e Another important point to note is that player 2 prefers (b1, bs) over (a1,a9) if 0 = xo while
he prefers (ai,az) over (b1, be) otherwise. This implies that even if communication is allowed,
player 2 would not be willing to communicate the information that is necessary to fulfill this
prediction because it would always give him the outcome that he prefers less. Player 2 would
prefer to manipulate his communications to get the outcome (by,b) if his type is z2 and the
outcome (a1, a2) otherwise.

Dominant Strategy Equilibria

The dominant strategy equilibria of Bayesian games can again be defined using the Selten game
representation. Given a Bayesian game

I'= <N7 (ez)a (Sz)’ (p’i)v (ul)>

a profile of type agent strategies (s7(.),s3(.),...,s5(.)) is said to be a strongly dominant strategy
equilibrium if

Us, (S;(Hi),s_i(g_i)) > Uei(Si,S—i(H—i)) Vs; € Si\ {S:(ez)} VO, € ©; VO_; € ©_; Vie N

Similarly, a profile of type agent strategies (sj(.),s5(.),...,s5(.)) is said to be a weakly dominant
strategy equilibrium if

Ugi (3;‘(91'), S,i(efi)) > Ugi(si, S,i(efi)) Vs; €S; VO, €0; VO_,€0_; Vie N

with strict inequality satisfied for at least one s;i1.S;. The notion of dominant strategy equilibrium is
independent of the belief functions and this is what makes it a very powerful notion and a very strong
property. The notion of a weakly dominant strategy equilibrium is used extensively in mechanism
design theory to define dominant strategy implementation of mechanisms.

Mixed Strategy Nash Equilibrium

Consider a Bayesian game
I'= <N7 (61)7 (Sz)a (p’i)a (uz)>



. A mixed strategy profile (or randomized strategy profile) associates a mixed strategy to every type

agent:
X X

A .
UE’IJENGZ'E@Z' (SZ)
This implies any o such that
g = ((Ji(silei))siesi)e@‘eei
iEN
such that
oi(sil6;) >0 Vs; €5; V8, €0; VieN
Z 0’,‘(3”92‘) =1 V0, € ©; VieN
$i€S;

0i(si|6;) is the conditional probability that a player ¢ would use action s; if his type were 6;. The
mixed strategy for type 6; of player i is:

oi(e]0;) = (0i(sil0i))s;es;
A randomized strategy profile

% % X X
g = \0pg. 07; Q; E .
(az)iEEN 1€ NO;, € ©,;

A(S))
is said to be a mixed strategy Bayesian Nash equilibrium if Vi € N, VO; € ©;,
Upi(0,,0%4,) 2 Up;(00;,0%4,) Voo, € A(S:)

A Bayesian Nash equilibrium specifies for each type of each player a randomized strategy such that
each type of each player would be maximizing his own expected utility when he knows his own type
but does not know the types of other players.

4 Purification of Randomized Strategies in Equilibria

Consider the following game:

2
1L R

T|00]0, -1
B| 10| —1,3

The unique (mixed strategy) equilibrium of this game is

Jl(T) = 0.750’1 (B) =0.25
o9(L) = 0.509(R) = 0.5

e The necessity for player 1 to randomly choose among 71" and B with probabilities 0.75 and 0.25
might not seem to coincide with any compulsion that people experience in real life.

e Of course, if player 1 thinks that player 2 is equally likely to choose either L or R, then player 1
is willing to randomize. But what could make player 1 actually want to use exact probabilities
0.75 and 0.257



e Harsanyi (1973) showed that Nash equilibria that involve randomized strategies can be inter-
preted as limits of Bayesian equilibria in which each player is (almost) always choosing his
uniquely optimal action.

e Harsanyi’s idea is to modify the game slightly so that each player has some private information
about his own payoffs.

Suppose the example game is modified slightly as follows.

2
1 L R

T | ea, ef | e, —1

B| 1,e8 | -1,3

This is now a game with incomplete information.

e ¢ is some given number such that 0 < € < 1 and @&, 3 are i.i.d. random variables, uniform over
[0,1].

e when the game is played, player 1 knows the value of @ but not B and player 2 knows the value
of 8 but not a.

e ¢ is some very small positive number and note that the table becomes the original previous table
when ¢ = 0. Then & and S represent minor factors that have a small influence on the players’
payoffs when T or L is chosen.

e Notice that T becomes better for player 1 as @ increases and L becomes better for player 2 as

B increases.

e Thus there should exist numbers p and q such that player 1 chooses T if is greater than p and
chooses B if a < p. Similarly player 2 chooses L if 8 > ¢ and chooses R if § < q.

e Then from player 1’s perspective, the probability that 2 will choose L is 1 — ¢.

e To make player 1 indifferent between T and B at the critical value of @ = p, we need

ep=1(1-¢q)+ (-1)g
ep=1-—2¢q

e Similarly, to make player 2 indifferent between L and R at the critical value 8 = g, we need

eg=(-1)(1-p)+@3)p
eq=4p —1

e The solution to the above two equations is

_ 2+4c¢
p_8+&:2
4+¢
q:
8+ ¢e2
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e There is a unique Bayesian equilibrium for this game:

— player 1 chooses T if he observes & > (2 +¢)/(8 + €2) and he chooses B otherwise
— Player 2 chooses L if she observes 8 > (4 —€)/(8 4 €2) and she chooses R otherwise.

e Thus the Bayesian equilibrium satisfies

_ _ 2+¢
0'1(.|04) = [T] 1fa>8+—82
e 2+¢
= Blita<grs
_ L= 4—¢
oa(e|B) = [[] lfﬁ>8+—e2
~  4d+c¢

= if
[R] if B 8 + £2

o1(e|@) and o3(e|3) can be chosen arbitrarily in the zero-probability events that

24¢ = 4—¢

““yre PTEre

when player 2 uses the equilibrium strategy oo in this game, player 1 would be indifferent between

T and B only if
2+¢

8+ ¢2

otherwise his expected utility is uniquely maximized by the action designated for him by o1 (e|@).

a =

When player 1 uses the strategy o7 in this game, player 2 would be indifferent between L and R
only if
4—¢

P=55a

Otherwise her expected utility is uniquely maximized by the action designated for her by o2 (e|53).

Thus, each player’s expected behavior makes the other player almost indifferent between his two
actions; therefore the minor factor that he observes independently can determine the unique
optimal action for him.

Notice that as ¢ — 0, this Bayesian Nash equilibrium converges to the unique mixed strategy
Nash equilibrium of the original game.

In general, when we study an equilibrium that involves randomized strategies, we can interpret
each player’s randomization as depending on minor factors that have been omitted from the
description of the game.

When a game has no equilibrium in pure strategies, we should expect that a player’s optimal
strategy may be determined by some minor factors that he observes independently of the other
players. Thus minor private information may be decisive.
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