

 
Next:2.
ListsUp:1.
IntroductionPrevious:1.3
To Probe Further
1.4 Problems
- 
1.
- 
Assuming that n is a power of 2, express the output of the following
program in terms of n.
         int mystery (int n)
         { int x=2, count=0;
           while (x < n) { x *=2; count++}
           return count;
         }
- 
2.
- 
Show that the following statements are true:
- 
(a)
- 
 is O(n2) is O(n2)
- 
(b)
- 
max(n3, 10n2)
is O(n3)
- 
(c)
- 
 ik
is O(nk + 1) and ik
is O(nk + 1) and (nk
+ 1), for integer k (nk
+ 1), for integer k
- 
(d)
- 
If p(x) is any kth degree polynomial with
a positive leading coefficient, then p(n) is O(nk)
and  (nk). (nk).
- 
3.
- 
Which function grows faster?
- 
(a)
- 
nlog n; (logn)n
- 
(b)
- 
lognk; (logn)k
- 
(c)
- 
nlogloglog n; (log
n)!
- 
(d)
- 
nn; n!.
- 
4.
- 
If f1(n) is O(g1(n))
and f2(n) is O(g2(n))
where f1and f2 are positive functions
of n, show that the function f1(n)
+ f2(n) is O(max(g1(n),
g2(n))).
- 
5.
- 
If f1(n) is O(g1(n))
and f2(n) is O(g2(n))
where f1and f2 are positive functions
of n, state whether each statement below is true or false. If the
statement is true(false), give a proof(counter-example).
- 
(a)
- 
The function | f1(n)
- f2(n)| is O(min(g1(n),
g2(n))).
- 
(b)
- 
The function | f1(n)
- f2(n)| is O(max(g1(n),
g2(n))).
- 
6.
- 
Prove or disprove: If f (n) is a positive function of n,
then f (n) is O(f
( )). )).
- 
7.
- 
The running times of an algorithm A and a competing algorithm A'
are described by the recurrences 
- 
T(n) = 3T( )
+ n;        T'(n)
= aT'( )
+ n;        T'(n)
= aT'( )
+ n )
+ n
respectively. Assuming T(1)
= T'(1) = 1, and n = 4k for some positive
integer k, determine the values of a for which A'
is asymptotically faster than A.
- 
8.
- 
Solve the following recurrences, where T(1) = 1 and T(n)
for n  2 satisfies: 2 satisfies:
- 
(a)
- 
T(n) = 3T( )
+ n )
+ n
- 
(b)
- 
T(n) = 3T( )
+ n2 )
+ n2
- 
(c)
- 
T(n) = 3T( )
+ n3 )
+ n3
- 
(d)
- 
T(n) = 4T( )
+ n )
+ n
- 
(e)
- 
T(n) = 4T( )
+ n2 )
+ n2
- 
(f)
- 
T(n) = 4T( )
+ n3 )
+ n3
- 
(g)
- 
T(n) = T( )
+ 1 )
+ 1
- 
(h)
- 
T(n) = 2T( )
+ log n )
+ log n
- 
(i)
- 
T(n) = 2T( )
+ n2 )
+ n2
- 
(j)
- 
T(n) = 2T(n
- 1) + 1
- 
(k)
- 
T(n) = 2T(n
- 1) + n
- 
9.
- 
Show that the function T(n) defined by T(1) = 1 and 
- 
T(n) = T(n - 1) +  
               
for n 2 has the complexity O(log n).
2 has the complexity O(log n).
- 
10.
- 
Prove or disprove: f(3**n) is O(f(2**n))
- 
11.
- 
Solve the following recurrence relation: 
- 
T(n)  cn
+ cn
+  T(i) T(i)
           
where c is a constant, n 2, and T(2) is known to be a constant c1.
2, and T(2) is known to be a constant c1.


 
Next:2.
ListsUp:1.
IntroductionPrevious:1.3
To Probe Further
eEL,CSA_Dept,IISc,Bangalore