
SOFTWARE MODELING AND DESIGN OF

EPSILON, AN E-PROCUREMENT TOOL

Y. Narahari

Ch. Kalyan

T.S. Chandrasekhar

Y.N. Chetan

E-Enterprises Lab, Indian Institute of Science, Bangalore, India

1. INTRODUCTION

This report documents the software modeling, analysis, architecture, and design of EPSILON (E-Procurement Solution), a tool for e-procurement that can be used by a company and its vendors in electronic procurement applications. UML (Unified Modeling Language) has been used in EPSILON modeling. The key features of EPSILON architecture and design are extensibility, reusability, robustness, and scalability. These features have been achieved through the use of best practices in software engineering such as design patterns. The tool has been designed to enable different types of mechanisms including auctions to be deployed as the procurement mechanism.

This report is organized as follows. Section 2 presents the requirements definition for EPSILON where we crystallize four top level requirements. Section 3 is devoted to object oriented analysis of EPSILON. In this section, the software requirements specification is presented first, followed by a detailed use-case model, accompanied by a description of the use cases. This is followed by a domain analysis where an analysis level class diagram is presented. Sequence and collaboration diagrams are presented next. In Section 4, the discussion is centered on EPSILON architecture. A solution model, a technology realization model, a J2EE realization model, and a .NET realization model are described. Section 5 presents the design model in the form of a design level class diagram. The emphasis in this section is on the use of the following design patterns: Abstract Factory, Strategy, Factory Method, Iterator, Observer, MVC, Singleton, and Proxy. In Section 6, component and deployment models are presented.

2. REQUIREMENTS DEFINITION

In this section, we present a crisp requirements definition for EPSILON, starting with a goal.

Goal: EPSILON is a software system that automates the supplier search and selection phase with the overall procurement process using auction-based mechanisms.

2.1 Top Level Requirements Definition

RD 1 Develop a software system that supports the selection of suppliers and allocation of contracts using auction-based mechanisms. The system may be used by a single owner or may be part of an overall exchange.

RD 2 The system should allow both human based agents and software agents to interact with the system.

RD 3 The system should allow the creation of new (1) auction mechanisms and (2) business rules that can be combined to generate customized auction formats. In short, it should be an extensible system.

RD 4 The system should provide a messaging infrastructure that supports the exchange of messages between the system and a variety of messaging clients (web browsers, email clients, PDA’s and mobile phones in a device independent manner)

The above four top level requirements form the basis for the next phase of the process, namely requirements analysis and domain analysis.

3. ANALYSIS OF EPSILON

Analysis is a process of identifying the conceptual items and properties necessary for a solution to be both correct and proper. Our approach partitions the analysis process into two phases: Requirements Analysis and Domain Analysis. During the requirements analysis, we reformulate and expand an informal set of requirements into a more formal description. This transformation is done gradually through use cases. Use cases offer a systematic and intuitive way to capture the functional requirements with particular focus on the value added to each individual user or to each external system. Use cases play a key role in driving the rest of the development work and that is the important reason for their acceptance in most approaches to modern software engineering. In Domain analysis, based on the set of use cases, domain classes are recognized and their relationships are captured [9].

3.1 Software Requirements Specification

We expect EPSILON to have the following stakeholders:

1. Buyer(s) or Buying Software Agent(s)

2. Supplier(s) or Supplier Software Agent(s)

3. System Administrator

The stakeholders’ requirements are captured below:

SR 3.1.1 Buyer

SR3.1.1.1 Buyers must be able to login, change passwords, and browse ‘relevant’ parts of the system.

SR3.1.1.2 They should be able to check the status of ongoing auctions created by them.

SR3.1.1.3 They should be able to create new auctions, and modify the rules of a predefined auction before it has started.

SR3.1.1.4 They should be able to close the auction.

SR3.1.1.5 They should be able to define new auction formats.

SR3.1.1.6 They should be able to browse a vendor catalogue and select vendors who could be invited to participate in an auction.

SR3.1.1.7 They should be able to directly create the RFQ on the EPSILON system, and forward messages created within the EPSILON system, or from an internal application, onto the relevant (i.e., invited) suppliers.

SR 3.1.2 Buying Agent

SR 1.1.2.1 A buying agent is a software agent capable of carrying out some of the actions on behalf of the buyer. Specifically, the buying agent should be able to check the status of an auction created by a buyer; query the bids submitted to the auction; and query the interim allocations and final allocations of the auction.

SR 1.1.2.2 The services should be offered via secure, authenticated means.

SR 3.1.1 Seller

SR3.1.3.1 Supplier should be able to register for an auction, browse the list of auctions he/she is permitted to see by the buyer, change access passwords, and submit bids for registered auctions.

SR3.1.3.2 The supplier should be able to respond to an RFQ either through an online interaction or by means of a message.

SR3.1.3.3 She should be able to submit various types of bids based upon the auction type.

SR3.1.3.4 She should be able to check the status of the auctions that she is registered for.

SR 1.1.4 Seller Agent

SR 1.1.4.1 A selling agent is a software agent capable of carrying out some of the actions on behalf of the seller. Specifically, the selling agent should be able to check the status of an auction registered for by the seller; query the auctions scheduled for a specific period; and query the interim allocations and final allocations of the auction. The services offered to a selling agent are through secure, authenticated means.

SR 1.1.5 System Administrator

SR 1.1.5.1 The SysAd sets up profiles for buyers and sellers (market participants).

SR 1.1.5.2 He should be able to add new products to the existing Catalogue.

SR 1.1.5.3 He should be able to remove products from the Catalogue.

SR 3.1.6 System

SR 3.1.6.1 Whenever the SysAd creates the profiles of buyers or sellers, the System should notify the corresponding user about his account information.

SR 3.1.6.2 During the auction set up by the buyer, the system should send RFQs to the mentioned set of suppliers if it is not an open cry auction.

SR 3.1.6.3 Whenever the auction close time is reached, system should determine the winners, price to be paid by the buyer for the winning sellers and notify the corresponding buyer and suppliers (subject to the buyer’s approvals).

SR 3.1.6.4 The system notifies the users of any relevant information about the auction.

3.2 Use Case Model

A use case model describes what the system does for each type of user and provides the essential input for analysis, design, and testing. It is a top-level view of the system and shows the actors, use cases, and their relationships. The actors are entities that interact with the system. From an understanding of the stakeholders of the system, we have identified the following actors: System Administrator, Buyer, Buying Agent, Seller, and Selling Agent.

The use cases are complete functionalities as perceived by an actor. In order to discover the set of use cases that capture the functionality of the system, we attempt to find the answers to the following questions: [5]
Q1. What functions does each actor require from the system?

Q2. What inputs does the system need?

Q3. What outputs does the system provide for each role?

Q4. Does the actor need to create, destroy, modify, or store some kind of information?

3.2.1 Use Case Diagrams
Based on answers to the questions stated above, we have discovered the use cases indicated in Table 3.1. Figure 3.2 depicts the overall diagram while Figures 3.2(a) to 3.2(f) detail six important use cases.

	Sl.No
	Question Motivating Discovery of Use Case

	Use Case
	Software Requirements traced to Use Case

	1.0
	Q1, Q2.
	Login (which extends to Change Account Information)
	SR 3.1.1.1

	2.0
	Q1.
	Logout
	SR 3.1.1.1

	3.0
	Q1, Q4.
	Setup Auction
	SR 3.1.1.3, SR 3.1.1.4, SR 3.1.1.6, SR 3.1.1.7

	3.1
	
	Add Product to Auction
	

	3.2
	
	Setup Rules for Auction
	

	3.3
	
	Send RFQ to vendors
	

	4.0
	Q1
	Notify Users
	SR 3.1.6.2

	5.0
	Q1, Q3

	Check Status
	SR 3.1.1.2, SR 3.1.2.1,

SR 3.1.3.4

	5.1
	
	Check Auction Status
	

	5.2
	
	Check Bid Status
	

	6.0
	Q1, Q3
	Browse Catalogue (Product Catalogue and Vendor Catalogue)
	SR 3.1.1.6

	7.0
	Q4.
	Modify Auction Rules
	SR 3.1.1.3, SR 3.1.2.1

	8.0
	Q1, Q4
	Close Auction
	SR 3.1.1.5

	10.0
	Q1, Q4
	Manage User
	SR 3.1.5.1

	
	
	Add User
	

	
	
	Remove User
	

	11.0
	Q1, Q4
	Auto Close Auction
	SR 3.1.6.3

	12.0
	Q1, Q4
	Submit Bid
	SR 3.1.3.1, SR 3.1.4.1

	
	
	Submit VDA Bid
	

	
	
	Submit CA Bid
	

	
	
	Submit MAA Bid
	

	13.0
	Q1
	Determine Winners
	SR 3.1.6.2

Table 3.1 Use Cases Identified

[image: image1.jpg]oD

changeaceountinto

2

Selingagent

ehedstatus

<:>hwmw
modityAuctionRuls: O

A

Buyingagent

X

Selleractor

<<mcmae\$
— O O

sendrrn

vmm

C:;F:‘ffi\ié<:> <:>

-
clossaudion g ramovelizer

a naMWsev

L N

detemineimes S
<einclude>s O

[——

aadProdud
aCatalogue

Figure 3.2 Use Case Diagram
m

[image: image2.jpg]£ =
4
S D

setupVDA setupCA setupMAA

Buyer_Actor

Figure 3.2(a) A use case diagram for "setup auction" use case

[image: image3.jpg]A

Seller_Actor
subritBid

submitVDA_Bid gubmitcA_Bid submitMAA_Bid

Figure 3.2(b) A use case diagram for "submit bid' use case

[image: image4.jpg]%/mkAu:t\nnStatus checkE\dStm‘JS\%

BuyingAgent SellingAgent

Figure 3.2(c) A use case diagram for "check status" use case
[image: image5.jpg]SystemAdmin_Ac
tor

e

addBuyer addSeller

Figure 3.2(d) A use case diagram for "add user" use case

[image: image6.jpg]SystemAdmin_Ac

removeBuyer removeSeller

Figure 3.2(e) A use case diagram for "remove user" use case

[image: image7.jpg]&>

browseProductCatalogue

@&

browseAuctionCatalogue

% \ Seller_Actor

Buyer_Actor

browseVendorCatalogue

Figure 3.2(f) A use case diagram for "browse catalogue" use case

3.2.2 Use Case Descriptions

1. Login Use case

a. Assumptions

i. The user is already registered in the system as a Buyer /Seller/System Administrator.(User Registration may be an off-line process)

b. Main Flow

i. The User enters his User name and password.

ii. The System determines whether the particular user is registered. (E1)
iii. If the user is registered, the system determines his category (e.g., Buyer, Seller, System administrator).
iv. The system displays the corresponding interface for the particular user category.

v. For each user the system allows him/her to change his profile as part of his interface in all the pages that follow. (E2)
c. Alternate flow
i. E1: User name/ Password are incorrect. The System takes the User back to the Login page and prompts for a re-login.

ii. E2: Inputs are invalid.
iii. The System provides the parameter input interface again for correcting his inputs.
2. Logout Use Case
a. Main Flow

i. The User Exits

ii. The system persists the user activity history.

3. Setup New Auction Use case
a. Main Flow

i. The buyer chooses to setup a new auction.

ii. He chooses the product(s) to be auctioned from the catalog of products.

iii. He sets the rules for the auction.

iv. He sets the Starting/Closing Date/Time of the auction.

v. He chooses the algorithms for determining winners and price.

vi. He approves the list of vendors to invite, and the list of vendor-specific items that each vendor will be allowed to bid on.

vii. The System sends an RFQ to the list of vendors already supplied by the procurer in case it is not an Open Cry Auction.

4. Add /Choose Product Use case (uses Browse Catalog Use case)
a. Main Flow

i. The buyer browses through a catalog of available products.

ii. He selects the product(s) to be auctioned (E3)
b. Alternate Flow

i. E3: Product not present in the catalog

ii. The buyer creates new product(s) and adds it to the catalog (subject to authorization by Purchasing Management to ensure new products are qualified and not duplicated somewhere else in the system.).

5. Setup Auction Rules Use case
a. Main Flow

i. The buyer sets the limit on the set of winning suppliers.

ii. The buyer sets the limit on the amount he is willing to pay to each winning supplier.

iii. The buyer sets the limit on the total amount he is willing to pay.

6. Send RFQ Use case
a. Assumptions

i. The buyer has already given a list of preferred/approved vendors.

b. Main Flow

i. The system checks for the set of suppliers for which the RFQ to be sent. (E4)
ii. The system sends a RFQ in the standard format to all the preferred vendors referring to the relevant details of auction that has been setup.

c. Alternate Flow

i. E4: The auction is an open-cry auction.

ii. The system sends an RFQ to all the registered vendors who are capable of supplying the product.

7. Check Auction Status Use case
a. Main Flow

i. The user browses the catalog of auctions set up by him.

ii. The user chooses the necessary auction whose status he wishes to check.

iii. The system displays the auction status.

8. Check Bid Status Use case
a. Assumptions

i. The Seller has submitted a valid bid

b. Main flow

i. The seller identifies the auction to which the bid has been submitted

ii. The system displays the current status of the bid i.e. the value of the bid, whether the bid is the current best and so on.

9. Modify Auction Rules Use case
a. Main Flow

i. The buyer chooses an auction from the list of auctions interface.

ii. The buyer opts to modify its rules.

iii. The system verifies his authority to do so. (E7)
iv. The buyer changes the rules of the auction.

b. Alternate Flow

i. E7: The auction has already started.

ii. The system informs the buyer that the rules can’t be modified now.

10. Close Auction Use case
a. Main Flow

i. The buyer chooses to close an auction.

ii. The system determines the winner of the auction and informs both the buyer and the winner/s (subject to buyer approval) about the details.

iii. The system closes the auction and updates the list of auctions.

11. Check Bid Status Use case
a. Main Flow

i. The seller chooses to check his bid status.

ii. The system displays his bid and the current round number of the auction and the winning price for the previous round.

12. Auto Close Auction Use case
a. Assumptions

i. The closing date/time of an auction is reached.

b. Main Flow

i. The system determines the winners by choosing the algorithm specified by the buyer during the setup of auction.

ii. The winners are informed about the auction. (E8)
iii. The buyer is informed about the winners and the other relevant details.

iv. The auction status is updated.

c. Alternate Flow

i. E8: There are no winner/bidders

ii. The buyer is informed and the auction status is updated.
13. Determine winners Use case
a. Assumptions

i. The auction has a valid set of bids.

b. Main flow

i. The system collects all the bids

ii. The system uses the winner determination algorithm as set by the buyer and computes the winning bids (E9)
iii. The system closes the auction and notifies the winners.

c. Alternate flow

i. E9: The auction in multiple round auction

ii. The system notifies the bidders on the current round details.
14. Notify User Use case
a. Main Flow

i. The system sends the message to the users (buyer/sellers).

15. Submit Bid Use case
a. Assumption

i. There is a valid auction being conducted

b. Main flow

i. The seller selects from a list of auctions

ii. He submits his bid for the chosen auction (E10)
iii. The system records his bid.

c. Alternate flow

i. E10: The auction has a set of predefined sellers and the seller does not belong to it

ii. The system indicates the seller regarding this.

3.3
Domain Analysis

The information gathered during the construction of the use-cases was used to perform the object decomposition and build the object structure of the system. [9], [10]

· Object identification: The key objects identified were: Auction, Bid, Buyer, Seller, Item, Attribute, Buying Agent, Selling Agent, System Admin, Buyer Catalogue, Vendor Catalogue, Product Catalogue, Rules, RFQ.

· Identification of relationships: The relationships between major classes were classified as follows:

· Volume Discount Bid, Combinatorial Bid etc are a type of Bids.

· Buyer, Seller and System Admin are a type of users.

· Buyer Catalogue, Vendor Catalogue, Product Catalogue are a type of Catalogues. So, they fall into the category of is a relationship

· Bid is a part of Seller. Order is a part of Buyer. So they strictly fall into Composition relationship. (Question: Is bid also a part of an Auction??)

In Section 3.3.1, we present the analysis level class diagram based on the classes and their relationships as identified above. In Section 3.3.2 and Section 3.3.3 we present the interaction diagrams to show how the objects communicate.

3.3.1 Analysis Level Class Diagram

The UML profile specifies a number of stereotypes for packages, classes, and relationships. It describes three particular stereotypes that are applied to classes. They are: [5]

Boundary Class: The stereotype <<boundary>> is used to describe a class that acts as an interface to the system -- it interfaces classes outside the system with classes inside it. Here WebInterface, AgentInterface are the boundary classes.

Control Class: The stereotype <<control>> is used to describe a class that exercises control over other classes, or acts upon them. Here classes such as Buyer, Seller, System Admin, Bid Evaluator, Round, Auction, Messaging Client, Business Rule Engine, Authentication Unit are the control classes.

Entity Class: The stereotype <<entity>> is used to describe a class that carries data, is acted upon by other classes, and is generally persistent. Here classes such as BuyerDB, AuctionDB, Buyer Catalogue, Vendor Catalogue, Product Catalogue, SellerDB, Bid, Rules, RFQ, and Item are the entity classes.

The traditional approach is to create classes, which incorporate both state and behavior. It makes sense to group these together since changes to the state stored results in changes to behavior. In this traditional model, there is one type of class (entity) to which presentation may also be added as necessary. However, it is better (in terms of flexibility and maintenance) to have three types of classes: interface (presentation), entity (state) and control (behavior).

Using this new model, the three different class types have three different purposes. Entity objects model the state of the system, which survives longer than a single use-case. Control objects model functionality that is not naturally tied to any other object. There may be one of these objects for one or many use-cases. Interface objects model behavior and information related to the user interface.

These three object types provide stability by ensuring that:

· Changes to interface (which are frequent) only affect interface objects.

· Functionality that is coupled to information (state) should only affect the entity object representing that information.

· Inter-Object functionality should only affect control objects.

All these are aimed at localizing changes to the system. This is similar to the Model View Controller (MVC) pattern [7]. In J2EE EJB systems, control objects are session beans, entity objects are entity beans and interface objects are typically JSP pages, servlets and Java beans (and tag libraries) in the web-tier. Note that interface objects can contain control as far as it affects the interface and that in J2EE, control objects may also exist in the web-tier [11]. As per the new model, we designed BuyerDB as the entity class corresponding to the control class Buyer. So, here the state is separated from behavior. We can think that BuyerDB is just a wrapper class corresponding to the Buyer Class. Similarly SystemAdminDB is the entity class corresponding to the SystemAdmin Control Class. SellerDB is the entity class corresponding to the Seller Control Class.

[image: image8.jpg]@

Wablntefacs

Buyercatalogue

Agentinterace

ProductCatalogue/endorC atalogus AuthentisstionUnit

sellens

Buyeron

i
5
. &
4
.

MessagingCient

Rules
f n n
VoA cABid MAA_Bid
d | [.

Singvatustor gLt
Round

570 060

VDA Evalustor CA_Evalustor MAA_Evaluator VDA_PrisingUnit CA_PricingUnit

BusinessRuleEngine

Figure 3.3 Domain Level Class Diagram

3.3.2 A Sequence Diagram

In this section, we present a typical sequence diagram [5], [11] for EPSILON. Figure 3.4 depicts the sequence diagram for “submitBid” use case. Sequence diagrams for other use cases can be developed likewise.

[image: image9.jpg]x

O O

Sellor acor Webintesace sl oig
1 submit b detais

Zowntss | seenis | |
- |
5 g i .

9: display bid ID i § o

le———
Toiviaw i
e

e e ey

@ @

sudion Audionn®

6: generateniding)

|
|
|
|
|
|
el

putin pesstent st

E—

S
IS

|
|
|
o |
| |
| |
| |
I I

Figure 3.4 Sequence diagram for “submitBid” use case

3.3.3 Collaboration Diagram

Like a sequence diagram, collaboration diagrams are also used for describing interactions between various objects [5], [11]. Figure 3.5 depicts the collaboration diagram for the setupAuction use case, which includes major tasks like creating an RFQ and sending them to the appropriate sellers specified by the buyer. Collaboration diagrams for other use cases can be developed likewise.

[image: image10.jpg]2 setupAuctiont) 4 3dd Hemto Catalogue

s —
y

13: display e audiond

ProdudtCatatogue

5 oreate Rules

4:submit auction datails

12: etum Austonl
14: viewthe reponze

putpoduct details Rules

tem

7 genemteAudtionlog)
10: sendRFAC)

& getrFaq)

—
Buyer_Adtor

9 retum RFQ

Ngsend RFQ o thespacedsellers

Aution wFa

MessagingCient

Figure 3.5 Collaboration diagram for “setupAuction” use case

4. AN ARCHITECTURE FOR EPSILON

Successful systems invariably need robust, scalable and flexible architectures. In this phase the model that we have developed in the class diagrams is organized into various packages, tiers and components [8], [11]. The better this organization is, the more successful the system will be. The architecture of EPSILON can be described at two different levels. In the first level is the technology independent, model-driven diagram. In the second level is a technology realization of the various components of the earlier model. We refer to the first model as the Solution Model, and refer to the second model as the Technology Realization model. We use the J2EE framework to realize the Technology realization model. Adherence to a specific framework allows us to develop and integrate components faster and better.

4.1 Solution Model

Architectures of systems are known to be better in most features when they are multi-tiered. The existence of multiple tiers allows the system to be highly modular and flexible. For this reason, EPSILON is designed to be a multi-tier system. It has the following tiers:

· The Web Presentation Tier

· The Control Tier

· The Business Logic Tier

· The Data Handling Tier

· The Messaging Tier

[image: image11.jpg](3] —

cof——

c3——

[—

Control Tier

- Business

Logic Tier

=

Data Handling
Tier

=

Web Enabled
Clients

Messaging Tier

Figure 4.1 Solution Model

The Web Presentation Tier: This tier is designed to allow the user to access the services offered by the system. The user is allowed to perform a set of well-defined operations, which achieves the ultimate business goal. Since EPSILON allows for software agents to interact with the system, it is possible for users to bypass this layer while accessing the services offered by the system. However, since the operations allowed for the agents are restricted, this layer can be considered to be the starting point of most interactions with the system.

The Control Tier: This tier essentially choreographs the various activities of the system. It is responsible for access control, right control, directing the requests to specific business logic components or data handling components, ensuring the scalability of the system by creating appropriate threads and pools of resources. This layer has the knowledge regarding the physical availability and location of the components that are below it. This layer is also responsible for load balancing.

The Business Logic Tier: This is the cardinal layer of the system. The services that are promised by the system are actually performed here. The determinations of winners and the price to be paid by the buyer to the winners, management of auctions, etc are some of the prominent functionalities of this tier. This layer may include computational resources that are distributed.

The Data Handling Tier: This tier is responsible for handling all operations related to the database(s) that store the information of the system. This tier is responsible for initializing databases, maintaining the database connections, pooling them, manipulating databases, and optimizing their performance.

The Messaging Tier: This layer is responsible for notification of various kinds of messages between the buyers and sellers. It is also used to notify any users of the system of any relevant information (like removal of users, renewal of account information, etc).

4.2 J2EE Realization Model

Figure 4.2 depicts the J2EE Realization Model for EPSILON.

Web Presentation Tier: The responsibilities of this tier are achieved using Java Server Pages (JSPs). This tier offers an interface to the users which they use to interact with the system.

Control Tier: This tier is implemented using servlets and tag libraries. In case of using Enterprise Java Beans at the lower levels, an Application Server would be necessary for these to run. Otherwise a Web Server is enough. There could be multiple servlets handling multiple requests each. The Servlets use the messaging system through worker beans

Business Logic Tier: This tier performs its responsibilities using worker bean classes or session beans. These classes also handle the initiation of the messaging process.

Data Handling Tier: These contain plain jdbc handler classes, which manage the database. Application servers, if used, provide a few features that would other wise be necessarily implemented explicitly (i.e. optimal usage of database connections and etc).

Messaging Tier: This tier is to be implemented using the ebXML Messaging system.

[image: image12.jpg]Payment/Banking

Applets,

S Agent Interface ather Application
interfaces
Web Interface PDAHandhetd devices
Web sersices techuologier
(WSDLUDDISOAFBicTalk) IR,
Fire Wall
\ \ Java Server Pages ‘WebPresentation Layer
Serviets
Buyer Seller SysAd
Control Layer
Auction
Worker beans, Session Beans
Buyer Seller Sysad
‘Business Logic Layer
Auction Regisiry Messaging
Data Handling layer
JDBC Classes, Entity Beans B
Catalog SellerDB BuyerDB AuctionDB
Messaging Syste z
esagneSysem soL Business Partner

or
Other System

Figure 4.2 J2EE Realization Model

4.3 .NET REALIZATION MODEL

.NET components have a one-to-one mapping with the J2EE model. Figure 4.3 depicts the .NET Realization Model of EPSILON.

Web Presentation Tier: Here ASP.Net is used instead of the JSP of J2EE.

Control and Business Logic Tiers: These are handled by .NET managed components like COM, DCOM, COM+ etc.

Data Handling Tier: The Classes in this layer are realized using ADO.NET components.

Messaging Layer: This tier would be realized using any Messaging System like eBXML.

[image: image13.jpg]Payment/Banking

Applets,

or
Other System

nterface Agent Titerfice, other Application
interfaces
Web Interface PO Handhetd devices
Web services technologies
(WSDLUDDLSOAPSATal) nrzp
Fire Wall
\ \ ActivéServer Pages NET WebPresentation Layer
Buyer Seller Sysad
Control Layer
Auction
_NET Managed Components
Buyer Setler Sysad
Business Logic Layer
Auction Registry Messaging
ADONET Data Handling layer
Catalog SellerDB BuyerDB AnctionDB
Messaging Syste =
AR soL Business Partner

Figure 4.3 .NET Realization Model

5. DESIGN OF EPSILON

Figure 5 shows the design level class diagram evolved from the analysis level class diagram. This diagram is developed by concentrating more on the Business Logic rather than the Persistence Mapping, or User Interface. The component diagram presented in the next section covers all the aspects of EPSILON.
[image: image14.jpg]enttr

Systemadminos
rom Use Case View)

EPSILON Maket

Bmaing

.

Urerach

o

15 St

T}
passuord Sting
Sloginusern .

.

ot
Authentiostiontnit
rom Use Case View)

Behedusen

ot
Seler
rom Use Case view)

S

et
sin
trom Use Gase View)

~gaushoniD - Siing

0n Seller 1
hmitBid0
HowBId0

rom Use Case View)

et
Htem

dsription

me Sting
Sting

gemo
CDesciptiong
aetDeserptiond

ot

rom Use Case view)

<ot
BusineseRuleEngine
rom Use Case View)

rom Use Case View)

Sastemineinnezn

@t tound_number nzgar

ot

15 Sting
el Shing oot
Systemadnin
om Use Case View)
EOEDn
Iy
s .
BuyerCatalogue oot
o Uss Caze Vi Buyer aniis
. fom Use Case View) VendorCatalogue
o [T o Use Caze Vi
et g
Sorbu o aad)
B emove)
Sanraisions getSeller)
antis AeEBD
wra P
o Uss Case Vi 7 e
S i ProductCatalogue
Dostiro fom Use Case View)
aat0
oo
oatproduct) =
iy 3
.
VoA_RrE AR P
—_ B 1
 — = o0 0.n ?
oot
Auction e
o Uss Caze Vi (B e | 1
D Sty
Sarpata: Date . P
ossbare et i
<scortial> oot touns tager B S
MessagingClent b Sy
e e protaool: tger
gfomils'C e Vit funand :Stin
o _adirs Sting pariipantD Sting
o e Sinng
Bject. Sting — uctong
oy sting] 0.1 | $Auciond on
osnersteuction'b
Pncting Senirr o TS
Shiesaginatiienty evalusts0 t ki
A Snofitinners)
SaiEii) o] rom Use Case view
S oeneratesiaing f "
R Acosserelage0 &yie s
ity in
Suctonds it on
o Use Caze Vi oot
Round

PringUnit
rom Use Case View)

| o T—

SasteminePiica)

%

ot
CA_Evaluato

rom Use Case View)

. -

|
|
|
|
L

A Evaluation_Stiategy

VoA_Factary

Ch_Facoy

undo
E
o g ot
A B Ca_pringunit Vos_prnglinit
rom e Case iew) rom e Casa Vi) [rom Ve Care view)
| T
i ‘
T
getsE ot
SR

VoA Evatustion_Shate

o

Sasteminewinnezn

Sasteminewinnen

|
|
|
|

CA_Picing_Stiatey

S - sting
Poresten
et et et
DA_Bid MAA_Bid ch i

rom Use Case View) | | om Use Case view

rom Use Case View)

VDA Preing Stategy.

$asteminpriosn

Dosteminepiica)

A |

Ch_CPLEX Evaluation_Stateay

| oA | |

VoA_CPLEX Evatustion_Stateay

[CAFPTA Prising_Stiategy | [CA_CPLEX_Pricing_Stisteqy | [

VoA CPLER Pina_Stateay | [VoALFPTALPiving_Statear
ifl

Figure 5. Design Level Class Diagram for EPSILON

5.1 Design Patterns

The following design patterns were found to be apt for EPSILON [6], [7]:

	Abstract Factory
	Observer

	Strategy
	MVC

	Factory Method
	Singleton

	Iterator
	Proxy

5.1.1 Abstract Factory

Intent: Provide an interface for creating families of related or dependent objects without specifying their concrete classes. Figure 5.1 depicts the Abstract Factory pattern where the Round object, depending on the auction attributes, instantiates the corresponding factory.

Participants

· Round object uses the interfaces declared by MechanismFactory, BidEvaluator and PricingUnit classes.

· MechanismFactory declares an interface for operations that create BidEvaluator and PricingUnit classes
· VDA_Factory and CA_Factory implements the operations such as getBidEvaluator() and getPricingUnit() to create corresponding BidEvaluator and PricingUnit
· BidEvaluator and PricingUnit declare an interface for VDA_Evaluator, CA_Evaluator and VDA_PricingUnit, CA_PricingUnit respectively.
· VDA_Evaluator, VDA_PricingUnit are the products to be created by VDA_Factory and CA_Evaluator, CA_PricingUnit are the products to be created by the CA_Factory.

[image: image15.jpg]ot
BidEvaluator

aeterminainnerz)

— —

Chom Use CaseView L T@ oot wund_number: Infegar|————s{(om Use Case View)

<ot oonions
Ch_Fvalustor VoA Evatuator
[com Use Case view)| |Ghom Use Case View)

ot

Round ot
rom s Casa Visw) Pringunit

SRaundy Qaeteminarios)
SevaluateCu nentoun 0

1 :

<oantul>> <ot
CA_Pricinarit VDA_PisingUnit
[rom Use case view)| rom e Case view)

T w

.

WeshanizmF actory

SgemidEvauston
SaetPrnglinitg

VoA_Factory Ch_Facoy

Figure 5.1 Abstract Factory Pattern

5.1.2 Strategy

Intent: Define a family of encapsulated algorithms and make them interchangeable so each algorithm can vary independently from the clients that use it.

For determining the winners and price to be paid by the buyer to the winners, there are several algorithms for each auction mechanism. For example, a winner determination problem can be solved using an Optimization Tool Solver or some approximation algorithms such as FPTA may be applied. Thus, Strategy pattern can be used for dynamic switching between these algorithms.

Figure 5.2(a) depicts the strategy pattern where CA_Evaluation_Strategy offers an interface in the form of the method determineWinners() common to all algorithms, CA_FPTA_Evaluation_Strategy, where the winners are determined using FPTA algorithm, and CA_CPLEX_Evaluation_Strategy where the winners are determined using a optimization solver called CPLEX. CA_Evaluator calls one of these algorithms dynamically.

Similarly, Figure 5.2(b) represents the strategy pattern where the algorithm for determining winners in a Volume Discount Auction is called dynamically. Figure 5.2(c) represents the strategy pattern where the algorithm for determining the price to be paid by the buyer to the winners in a Combinatorial Auction is called dynamically. Figure 5.2(d) represents the strategy pattern where the algorithm for determining the price to be paid by the buyer to the winners in a Volume Discount Auction is called dynamically.

[image: image16.jpg]CAEvauaton_stategy

Saeteminainner)

<ot
CA_Evaluator
rom Use Case view)|

CA_FPTA Evaluation_stategy | | CA_CPLEX Evalustion_Stategy

Figure 5.2(a) Strategy Pattern for Bid Evaluation in Combinatorial Auctions

[image: image17.jpg]DA Evaluation_Stateay

Qaetermineinne 0

ot
DA_Evalustor
rom Use case view)|

VDA_FPTA Evatustion_Stateay

VDA_CPLEX Evalustion_Stateay

Figure 5.2(b) Strategy Pattern for Bid Evaluation in Volume Discount Auctions

[image: image18.jpg]CA_Pricing_Stategy

aeteminpiice

ot
CA_Prsinanit
[rom Use case view)|

CA_FPTA Picing_Stiateay

CA_CPLEX Proing_Stateay

Figure 5.2(c) Strategy Pattern for Price Determination in Combinatorial Auctions

[image: image19.jpg]VDA Prsing trategy.

aeteminariosC

<ot
DA_Priinglnit
rom Use Case view)|

VDA_CPLEX_Pricing_Stiatagy

DA_FPTA_Pricing_Stratagy

Figure 5.2(d) Strategy Pattern for Price Determination in Volume Discount Auctions

5.1.3 Iterator

Intent: Provide a way to access the elements of an aggregate object without exposing its underlying representation.

Figure 5.3 depicts the Iterator Pattern. Since the structure of bids under different mechanisms is different, the list of bids to be traversed also will have its own individual data structure. The Iterator pattern can be used to traverse the bid list regardless of the actual mechanism being used.

· BidListIterator defines an interface for accessing and traversing elements.
· VDA_BidListIterator and CA_BidListIterator implement the BidListIterator Interface and keep track of the current position in the traversal of the corresponding Bid List.
· BidList defines an interface for creating a BidListIterator Object.
· VDA_BidList, which is a collection of Supply Curves, and CA_BidList, which is a collection of various bundles, implements the BidList interface to return an instance of the corresponding Iterator.

[image: image20.jpg]eantol>
Audin
rom Use Casa View)

&0 Sng

aDate : Date
clozeData : Date
no_ot_tounds : Inager|
type Sting

protosal - Inager
ounenD : Sting
patticipantid : Sting

Shuctiong
Shuctiond
Sgeneratesuctionidg
Qcenarrog
Savatuatg
Snatitywinner)
Qaddbid)
SgencrateBiaing
hashooesPrevilegs)

g

TempBidLit

Qoreatearator)
Ssounty

<ot
Round
rom Use Case View)

(@ n_wund_nomber - e

Sroundo

SealuatsCunantiound)
BidLitharator
Vi)
Snedy
Qizsy
Soumntpidy

TR e
\
VoAt Vo Biai

Ch Bt

Ch_iaLia|
terstor

Figure 5.3 Iterator Pattern

5.1.4 Observer

Intent: Define relationship amongst a collection of objects such that whenever one object is updated all others are notified automatically.

Here Auction object acts as Observer and Round object acts as a Subject. During winner determination, Auction object hands the responsibility to the Round object to determine the winners and corresponding price to be paid by the buyer to the winners. So, until the Round object returns the status of evaluation, Auction will be in the waiting state. This is shown in Figure 5.4.

[image: image21.jpg]<ot
sution
(rom Use Case View)

10 :Sting
aDate - Date
clozDate: Date

no_atounds : Intager|
ype Sting

protoool: Itager
oune 0. Sting rom Use Case View

<
Round

partdpantD : Sting <= @pourent_tound_number Inteqsr|

audiony QRaundy
Shudiond SavalustaCunentiound)

Sgeneratesuctionig
QeenarFog
Savalust)
Snatiwinnes)
Qaiid)

Qgene atesiaiog
hashoomsPrviegs)

Figure 5.4 Observer Pattern

5.1.5 The Factory Method

Intent: Define an interface for creating an object, but let subclasses decide which class to instantiate.

Different Auction mechanisms have different RFQ structures. So, depending on the type of auction being set up, Auction object creates corresponding RFQ object through the RFQ interface. This is shown in Figure 5.5(a). Different bids have different structures. Depending on the auction type, each seller object creates the corresponding Bid object. This is shown in Figure 5.5(b)

[image: image22.jpg]enttr
RFa
rom Use Case view)

P
Aution
rom Use Case View

[@mesage: sting

Sgemrng

10 :Sting
atDate - Date
clozeDats : Date
no_ot_tounds - Inager|
type Sting
protosol : Inager
cunend : Sting
patticipantid : Sting

VoA Rra

chrra

AA_RF

autiong
Shutiond
QgenerateAuctiontng
QsenarFog
Qavaluats)
Snatitywinner)
Qaddbid)
SgenerateBiaing
nashooesPrevilegs)

Figure 5.5(a) The Factory Method Pattern for RFQ Generation

[image: image23.jpg]<ot
Seler

[rom Use case view|

email: Sting
bid : Sting

Qsaiteny
SautmitBid)
Schowgid)

ey
i

from Use Case view)

o= audon sting

hidiD Sting

Qureate)

!—%

et
DA_Bid
[rom Use Gase view)

et
MAA_Bid
[rom Use Case view)|

et
ch i
trom Use Case view)|

Figure 5.5(b) The Factory Method Pattern for Bid Creation
5.1.6 Chain of Responsibility

Intent: Avoid coupling the sender of a request to its receiver by giving more than one object a chance to handle the request.

Figure 5.6 depicts the Chain of Responsibility Pattern. Here the UserFactory creates a SellerValidationUnit object and checks if he is a seller. If not, it internally calls the next object in chain, BuyerValidationUnit and it checks if he is a valid Buyer and if not, it internally calls the next object in chain, SystemAdminValidationUnit.
[image: image24.jpg]Useracoy

10 - Sting
password Sting

<<control=>
Authentiostiontnit

tom Use Caseview)

Selenandstiontnit

BuyenvalisationUnit

SytemAdminvalidstionUnt

Wogintiser)

Sohediizan

Qissalien

suyern)

Vissystemadming

Figure 5.6 Chain of Responsibility Pattern

5.1.7 Singleton

Intent: Ensure a class has only one instance and provide a global point of access

Here, if we wish to maintain our storage media distributed in the network, it is not a good idea to make multiple connections. The Singleton pattern is applied for DataManager class. DataManager is responsible for making the connection to the remote database. It provides an abstraction of where the database is located.

The following are other relevant patterns that can be applied for EPSILON

5.1.8 Proxy

Intent: Provide a surrogate or place holder to control access to an object

If suppliers are to be put into different categories (most preferred, preferred, not preferred, don't-care, etc.) and different categories of suppliers are to be provided different privileges in accessing information, Proxy will be very useful. Also, if you wish to distinguish between winners and non-winners and wish to enforce access control, Proxy will come in handy.

6. DEPLOYMENT MODEL FOR EPSILON

Figure 6 depicts a component diagram [5], [11] for EPSILON assuming that the software technology is to be Java Server Pages/ Servlets. Table 6.0 tells us to which component the classes depicted in the Design Class Diagram are mapped.

	Name of the

Component
	Classes in Design Class Diagram

	SystemAdmin
	SystemAdmin

	SystemAdminDB
	SystemAdminDB

	Buyer
	Buyer, Order, Item, Attribute

	BuyerDB
	BuyerDB

	Seller
	Seller, Bid, VDA_Bid, CA_Bid, MAA_Bid

	SellerDB
	SellerDB

	MessagingClient
	MessagingClient

	BusinessRuleEngine
	BusinessRuleEngine

	AuctionHouse
	Auction, Round, RFQ, VDA_RFQ, MAA_RFQ, CA_RFQ, Rules, MechanismFactory, VDA_Factory, CA_Factory, BidEvaluator, VDA_Evaluator, CA_Evaluator, PricingUnit, VDA_PricingUnit, CA_PricingUnit, CA_Evaluation_Strategy, CA_FPTA_Evaluation_Strategy, CA_CPLEX_Evaluation_Strategy, VDA_Evaluation_Strategy, VDA_FPTA_Evaluation_Strategy, VDA_CPLEX_Evaluation_Strategy, CA_Evaluation_Strategy, CA_FPTA_Pricing_Strategy, CA_CPLEX_Pricing_Strategy, VDA_Pricing_Strategy, VDA_FPTA_Pricing_Strategy, VDA_CPLEX_Pricing_Strategy

	AuctionDB
	AuctionDB

	DataManager
	DataManager

	Catalogue
	Catalogue, BuyerCatalogue, VendorCatalogue, ProductCatalogue

Table 6.0 Mapping between Class Diagram and Component Diagram

[image: image25.jpg]

Figure 6.0 Component Diagram for EPSILON

6.1
A HIGH LEVEL COMPONENT DIAGRAM

Figure 6.1 depicts a high-level component view of EPSILON using UML package diagram [5], [11]. Table 6.1 shows how Package diagram abstracts the component diagram in Figure 6.0.

	Package
	Components

	Client Pages
	All components with stereotype “Client Page”

	Server Pages
	All components with stereotype “Server Page”

	Business Logic
	Auction House, Buyer, Seller, SystemAdmin

	Utility
	Messaging Client and Business Rule Engine

	Persistence
	BuyerDB, SellerDB, SystemAdminDB, AuctionDB, Catalogue, DataManager

Table 6.1 Mapping between Component Diagram and Package Diagram

Client Pages Package: Consists of HTML pages, which enable the user to interact with the system. This is considered as View in MVC pattern.

Server Pages Package: Consists of JSP/Servlets, which handle the requests from the clients and are responsible for invoking appropriated objects in the Business Logic Package. This is considered as Controller in MVC pattern.

Business Logic Package: Consists of worker classes, which implement the auction logic part. This package also uses the services of Persistence Package and Utility Package. The classes in this package perform activities like winner determination, sending RFQ etc.

Utility Package: Consists of utility classes like MessagingClient, which basically sends mails, and BusinessRuleEngine, which plays a prominent role during winner determination in filtering the bids.

Persistence Package: Consists of classes whose implementation depends on the persistent storage media chosen. The DataManager class in this package is responsible for maintaining connectivity with the Database and acts as an interface for other classes performing certain operations like insert, update, delete, and select on the Data Base.

MVC Pattern

Since JSP/Servlets are used as the technology, the Server Pages act as Controller, Client Pages acts as View and Business Logic, Utility and Persistence form the Model in the MVC Pattern [7].

[image: image26.jpg][

Clent Pages

I
—"

Server Pages

BusinessLogic

Uity

O

A
A_‘v

Persistence

Figure 6.1. A High level component view for EPSILON

